Stochastic Modeling and Risk Management for Water Resources Systems Under Changing Climatic Conditions


Book Description

Water resources are indispensable for the sustainable development of the human society. A variety of hydrological modeling and water resources management tools based on simulation and optimization have been developed to address the current water issues worldwide. However, there are many challenges arising from climate change, human disturbances and enormous uncertainties and complexities. Thus, there is a global need for advanced methodologies that can support the modeling and management of water resources systems in an effective and efficient way. In this dissertation research, a spectrum of methods have been developed to deal with the stochastic modeling and risk-based management problems for water resources systems. These methods include: (i) a Stepwise Clustered Hydrological Inference (SCHI) model that can establish the complex nonlinear relationships between climatic conditions and streamflow for hydrological forecasting; (ii) a flexible and effective hydro-climatic modeling framework based on the Providing Regional Climates for Impacts Studies (PRECIS) modeling system and stepwise cluster analysis for hydrological modeling under the changing climatic conditions; (iii) a Stepwise-cluster-analysis-based Probabilistic Collocation Expansion (SPCE) method for the stochastic simulation and forecast of hydrologic time series; (iv) a hydrologic frequency analysis framework based on change point analysis and Bayesian parameter estimation to deal with the nonstationarity and uncertainties in hydrological risk analysis; (v) an Interval-parameter Two-stage Fuzzy Stochastic Integer Programming (ITFSIP) model for risk-based flood diversion management under multiple uncertainties. The proposed methods have been applied to the Xiangxi River Watershed in China and the Grand River Watershed in Canada, in order to demonstrate their capabilities and performances in precipitation-runoff modeling, climate change impact analysis, uncertainty quantification, frequency analysis, and systematic water resources and risk management. The major contribution of this research lies in the development of innovative approaches for tackling various uncertainties and complexities in the hydrological cycle and water resources systems. This research can provide scientific and practical bases for robust hydrological modeling and reliable water resources management.




Confronting Climate Uncertainty in Water Resources Planning and Project Design


Book Description

Confronting Climate Uncertainty in Water Resources Planning and Project Design describes an approach to facing two fundamental and unavoidable issues brought about by climate change uncertainty in water resources planning and project design. The first is a risk assessment problem. The second relates to risk management. This book provides background on the risks relevant in water systems planning, the different approaches to scenario definition in water system planning, and an introduction to the decision-scaling methodology upon which the decision tree is based. The decision tree is described as a scientifically defensible, repeatable, direct and clear method for demonstrating the robustness of a project to climate change. While applicable to all water resources projects, it allocates effort to projects in a way that is consistent with their potential sensitivity to climate risk. The process was designed to be hierarchical, with different stages or phases of analysis triggered based on the findings of the previous phase. An application example is provided followed by a descriptions of some of the tools available for decision making under uncertainty and methods available for climate risk management. The tool was designed for the World Bank but can be applicable in other scenarios where similar challenges arise.




Modelling the Impact of Climate Change on Water Resources


Book Description

The quantitative assessment of the impact of climate change on water availability and water resources management requires knowledge of climate, hydro(geo)logical and water resources models, and particularly the relationships between each of them. This book brings together world experts on each of these aspects, distilling each complex topic into concise and easy to understand chapters, in which both the uses and limitations of modelling are explored. The book concludes with a set of case studies using real-life examples to illustrate the steps required and the problems that can be faced in assessing the potential impacts of climate change on water resource systems. For students, scientists, engineers and decision-makers alike, this book provides an invaluable and critical look at the information that is provided by climate models, and the ways it is used in modelling water systems. A key focus is the exploration of how uncertainties may accrue at each stage of an impacts assessment, and the reliability of the resulting information. The book is a practical guide to understanding the opportunities and pitfalls in the quantitative assessment of climate change impacts and adaptation in the water resource sector.




Stochastic Hydrology and its Use in Water Resources Systems Simulation and Optimization


Book Description

Stochastic hydrology is an essential base of water resources systems analysis, due to the inherent randomness of the input, and consequently of the results. These results have to be incorporated in a decision-making process regarding the planning and management of water systems. It is through this application that stochastic hydrology finds its true meaning, otherwise it becomes merely an academic exercise. A set of well known specialists from both stochastic hydrology and water resources systems present a synthesis of the actual knowledge currently used in real-world planning and management. The book is intended for both practitioners and researchers who are willing to apply advanced approaches for incorporating hydrological randomness and uncertainty into the simulation and optimization of water resources systems. (abstract) Stochastic hydrology is a basic tool for water resources systems analysis, due to inherent randomness of the hydrologic cycle. This book contains actual techniques in use for water resources planning and management, incorporating randomness into the decision making process. Optimization and simulation, the classical systems-analysis technologies, are revisited under up-to-date statistical hydrology findings backed by real world applications.




Beyond Downscaling


Book Description

Climate change adds uncertainty to already complex global water challenges. Because climate change affects poorer countries and vulnerable populations the most, the World Bank strives to mainstream climate change considerations into its operations to inform investment and water resources management decisions. Although no standard method has been adopted yet by the Bank, common practice used downscaled projected precipitation and temperature from Global Climate Models (GCMs), as input to hydrologic models. While this has been useful in some applications, they often give too wide a dispersion of readings to provide useful guidance for site-specific water resources management and infrastructure planning and design. Rather than design for an uncertain situation selected a priori, the so-called “bottom-up” approaches explore the sensitivity of a chosen project to the effects of uncertainties caused by climate change. This book summarizes alternatives explored by a group of organizations (such as the U.S. Corps of Engineers, Conservation International, the University of Massachusetts and the Bank) all belonging to the Alliance for Global Water Adaptation (AGWA), to provide practitioners with the tools to adapt to the realities of climate change by following a decision-making process that incorporates bottom-up thinking.




Stochastic Assessment of Climate-Induced Risk for Water Resources Systems in a Bottom-Up Framework


Book Description

Significant challenges in water resources management arise because of the ever-increasing pressure on the world's heavily exploited and limited water resources. These stressors include demographic growth, intensification of agriculture, climate variability, and climate change. These challenges to water resources are usually tackled using a top-down approach, which suffers from many limitations including the use of a limited set of climate change scenarios, the lack of methodology to rank these scenarios, and the lack of credibility, particularly on extremes. The bottom-up approach, the recently introduced approach, reverses the process by assessing vulnerabilities of water resources systems to variations in future climates and determining the prospects of such wide range of changes. While it solves some issues of the top-down approach, several issues remain unaddressed. The current project seeks to provide end-users and the research community with an improved version of the bottom-up framework for streamlining climate variability into water resources management decisions. The improvement issues that are tackled are a) the generation of a sufficient number of climate projections that provide better coverage of the risk space; b) a methodology to quantitatively estimate the plausibility of a future desired or undesired outcome and c) the optimization of the size of the projections pool to achieve the desired precision with the minimum time and computing resources. The results will hopefully help to cope with the present-day and future challenges induced mainly by climate. In the first part of the study, the adequacy of stochastically generated climate time series for water resources systems risk and performance assessment is investigated. A number of stochastic weather generators (SWGs) are first used to generate a large number of realizations (i.e. an ensemble of climate outputs) of precipitation and temperature time series. Each realization of the generated climate time series is then used individually as an input to a hydrological model to obtain streamflow time series. The usefulness of weather generators is evaluated by assessing how the statistical properties of simulated precipitation, temperatures, and streamflow deviate from those of observations. This is achieved by plotting a large ensemble of (1) synthetic precipitation and temperature time series in a Climate Statistics Space (CSS), and (2) hydrological indices using simulated streamflow data in a Risk and Performance Indicators Space (RPIS). The performance of the weather generator is assessed using visual inspection and the Mahalanobis distance between statistics derived from observations and simulations. A case study was carried out using five different weather generators: two versions of WeaGETS, two versions of MulGETS and the k-nearest neighbor weather generator (knn). In the second part of the thesis, the impacts of climate change, on the other hand, was evaluated by generating a large number of representative climate projections. Large ensembles of future series are created by perturbing downscaled regional climate models' outputs with a stochastic weather generator, then used as inputs to a hydrological model that was calibrated using observed data. Risk indices calculated with the simulated streamflow data are converted into probability distributions using Kernel Density Estimations. The results are dimensional joint probability distributions of risk-relevant indices that provide estimates of the likelihood of unwanted events under a given watershed configuration and management policy. The proposed approach offers a more complete vision of the impacts of climate change and opens the door to a more objective assessment of adaptation strategies. The third part of the thesis deals with the estimation of the optimal size of SWG realizations needed to calculate risk and performance indices. The number of realizations required to reach is investigated utilizing Relative Root Mean Square Error and Relative Error. While results indicate that a single realization is not enough to adequately represent a given stochastic weather generator, results generally indicate that there is no major benefit of generating more than 100 realizations as they are not notably different from results obtained using 1000 realizations. Adopting a smaller but carefully chosen number of realizations can significantly reduce the computational time and resources and therefore benefit a larger audience particularly where high-performance machines are not easily accessible. The application was done in one pilot watershed, the South Nation Watershed in Eastern Ontario, yet the methodology will be of interest for Canada and beyond. Overall, the results contribute to making the bottom-up more objective and less computationally intensive, hence more attractive to practitioners and researchers.




Water Resources Systems


Book Description




Floods in a Changing Climate


Book Description

Provides a flood risk-management framework for identifying and assessing climate-related risks and developing adaptation responses, for academic researchers and professionals.




Climate Change and Water Resources Management


Book Description

Many challenges, including climate change, face the Nation¿s water managers. The Intergovernmental Panel on Climate Change (IPCC) has provided estimates of how climate may change, but more understanding of the processes driving the changes, the sequences of the changes, and the manifestation of these global changes at different scales could be beneficial. Since the changes will likely affect fundamental drivers of the hydrological cycle, climate change may have a large impact on water resources and water resources managers. The purpose of this interagency report is to explore strategies to improve water management by tracking, anticipating, and responding to climate change. Charts and tables.




Water Resources Planning and Management


Book Description

Water is an increasingly critical issue at the forefront of global policy change, management and planning. There are growing concerns about water as a renewable resource, its availability for a wide range of users, aquatic ecosystem health, and global issues relating to climate change, water security, water trading and water ethics. This handbook provides the most comprehensive reference ever published on water resource issues. It brings together multiple disciplines to understand and help resolve problems of water quality and scarcity from a global perspective. Its case studies and 'foundation' chapters will be greatly valued by students, researchers and professionals involved in water resources, hydrology, governance and public policy, law, economics, geography and environmental studies.