Biolubricants


Book Description

Lubricants are essential in engineering, however more sustainable formulations are needed to avoid adverse effects on the ecosystem. Bio-based lubricant formulations present a promising solution. Biolubricants: Science and technology is a comprehensive, interdisciplinary and timely review of this important subject. Initial chapters address the principles of lubrication, before systematically reviewing fossil and bio-based feedstock resources for biodegradable lubricants. Further chapters describe catalytic, (bio) chemical functionalisation processes for transformation of feedstocks into commercial products, product development, relevant legislation, life cycle assessment, major product groups and specific performance criteria in all major applications. Final chapters consider markets for biolubricants, issues to consider when selecting and using a lubricant, lubricant disposal and future trends. With its distinguished authors, Biolubricants: Science and technology is a comprehensive reference for an industrial audience of oil formulators and lubrication engineers, as well as researchers and academics with an interest in the subject. It provides an essential overview of scientific and technological developments enabling the cost-effective improvement of biolubricants, something that is crucial for the green future of the lubricant industry. A comprehensive, interdisciplinary and timely review of bio-based lubricant formulations Addresses the principles of lubrication Reviews fossil and bio-based feedstock resources for biodegradable lubricants




Lubricant Additives


Book Description

This indispensable book describes lubricant additives, their synthesis, chemistry, and mode of action. All important areas of application are covered, detailing which lubricants are needed for a particular application. Laboratory and field performance data for each application is provided and the design of cost-effective, environmentally friendly technologies is fully explored. This edition includes new chapters on chlorohydrocarbons, foaming chemistry and physics, antifoams for nonaqueous lubricants, hydrogenated styrene–diene viscosity modifiers, alkylated aromatics, and the impact of REACh and GHS on the lubricant industry.




Assessment of the Friction Behaviour of Selected Base Oils Under Oscillatory Sliding Conditions


Book Description

The ability of a lubricating oil to reduce friction in mechanical surfaces which are in relative sliding motion depends on the base oil behaviour. Previous studies have demonstrated that temperature has a significant influence on the friction behaviour of mineral and synthetic base oils by using a laboratory based friction testing machine. However, the effect of a constantly changing load under different temperature conditions has not been explored fully. In this study, the effect of an increasing load on the friction behaviour of four six different mineral base oils and a polyalphaolefin (PAO) base oil were studied using the SRV4AÌ2℗ʼ tribometer. The sliding surfaces were AISI 52100 steel ball and disc. The average loads (range: 50 aÌ22́Ơ0́− 250 N), temperatures (range: 40 aÌ22́Ơ0́− 120 oC), relative humidity of 20 % and a sliding speed of 0.2 m.s-1 were selected as the test conditions. The seven base oils were selected from four API base oil groups. Stribeck curves were used as a tool to characterize the friction behaviour of the base oils. The results show that for all the base oils, the coefficient of friction and the Stribeck parameter decrease gradually with the increase in applied normal load under constant temperature conditions. The increase in temperature increased the coefficient of friction and decreased the Stribeck parameter at each load stage. The external friction mechanisms dominated the friction behaviour under all test conditions. Viscosity showed a strong influence on the film forming characteristics of the seven base oils only at 40 and 60 oC. Between 80 and 120 oC, the oil-surface interactions were predominant. The results further demonstrated that effect of an increasing temperature on the coefficient of friction was bigger between 80 and 100 oC for all Group III base oils and was consistent between 40 and 120 oC for the Group III+ and PAO base oil. The highly saturated (PAO and Group III+) base oils have demonstrated good thermal stability and less reactivity compared to the less saturated base oils (GI and GIII) under all test conditions. The friction behaviour of the PAO base oil was the most affected by the presence of dissolved water. The presence of water proved to increase the friction at the sliding steel interfaces.










LubricationTribology, Lubricants and Additives


Book Description

Tribology is an interdisciplinary area that studies the reduction of friction between moving parts combining chemistry, physics and engineering disciplines. Lubricants are typically substances used to reduce friction. This book contains two sections: the first section examines the chemistry of lubricants and additives, while the second section looks at the lubrication of different types of materials.