Parallel Sorting Algorithms


Book Description

Parallel Sorting Algorithms explains how to use parallel algorithms to sort a sequence of items on a variety of parallel computers. The book reviews the sorting problem, the parallel models of computation, parallel algorithms, and the lower bounds on the parallel sorting problems. The text also presents twenty different algorithms, such as linear arrays, mesh-connected computers, cube-connected computers. Another example where algorithm can be applied is on the shared-memory SIMD (single instruction stream multiple data stream) computers in which the whole sequence to be sorted can fit in the respective primary memories of the computers (random access memory), or in a single shared memory. SIMD processors communicate through an interconnection network or the processors communicate through a common and shared memory. The text also investigates the case of external sorting in which the sequence to be sorted is bigger than the available primary memory. In this case, the algorithms used in external sorting is very similar to those used to describe internal sorting, that is, when the sequence can fit in the primary memory, The book explains that an algorithm can reach its optimum possible operating time for sorting when it is running on a particular set of architecture, depending on a constant multiplicative factor. The text is suitable for computer engineers and scientists interested in parallel algorithms.




The Design and Analysis of Parallel Algorithms


Book Description

The main focus is on the development of parallel algorithms on massively parallel computers, although some architectural issues are addressed. SIMD parallel algorithms are discussed in several general areas of application: numerical and scientific computing, including matrix algorithms and numerical solutions to partial differential equations; and symbolic areas, including graph algorithms, symbolic computation, and sorting. Exercises are provided with selected answers. Annotation copyright by Book News, Inc., Portland, OR




Introduction to Parallel Computing


Book Description

Mathematics of Computing -- Parallelism.




Introduction to Parallel Algorithms


Book Description

Parallel algorithms Made Easy The complexity of today's applications coupled with the widespread use of parallel computing has made the design and analysis of parallel algorithms topics of growing interest. This volume fills a need in the field for an introductory treatment of parallel algorithms-appropriate even at the undergraduate level, where no other textbooks on the subject exist. It features a systematic approach to the latest design techniques, providing analysis and implementation details for each parallel algorithm described in the book. Introduction to Parallel Algorithms covers foundations of parallel computing; parallel algorithms for trees and graphs; parallel algorithms for sorting, searching, and merging; and numerical algorithms. This remarkable book: * Presents basic concepts in clear and simple terms * Incorporates numerous examples to enhance students' understanding * Shows how to develop parallel algorithms for all classical problems in computer science, mathematics, and engineering * Employs extensive illustrations of new design techniques * Discusses parallel algorithms in the context of PRAM model * Includes end-of-chapter exercises and detailed references on parallel computing. This book enables universities to offer parallel algorithm courses at the senior undergraduate level in computer science and engineering. It is also an invaluable text/reference for graduate students, scientists, and engineers in computer science, mathematics, and engineering.




Parallel Algorithms


Book Description

This book is an introduction to the field of parallel algorithms and the underpinning techniques to realize the parallelization. The emphasis is on designing algorithms within the timeless and abstracted context of a high-level programming language. The focus of the presentation is on practical applications of the algorithm design using different models of parallel computation. Each model is illustrated by providing an adequate number of algorithms to solve some problems that quite often arise in many applications in science and engineering.The book is largely self-contained, presuming no special knowledge of parallel computers or particular mathematics. In addition, the solutions to all exercises are included at the end of each chapter.The book is intended as a text in the field of the design and analysis of parallel algorithms. It includes adequate material for a course in parallel algorithms at both undergraduate and graduate levels.




Parallel Processing and Parallel Algorithms


Book Description

Motivation It is now possible to build powerful single-processor and multiprocessor systems and use them efficiently for data processing, which has seen an explosive ex pansion in many areas of computer science and engineering. One approach to meeting the performance requirements of the applications has been to utilize the most powerful single-processor system that is available. When such a system does not provide the performance requirements, pipelined and parallel process ing structures can be employed. The concept of parallel processing is a depar ture from sequential processing. In sequential computation one processor is in volved and performs one operation at a time. On the other hand, in parallel computation several processors cooperate to solve a problem, which reduces computing time because several operations can be carried out simultaneously. Using several processors that work together on a given computation illustrates a new paradigm in computer problem solving which is completely different from sequential processing. From the practical point of view, this provides sufficient justification to investigate the concept of parallel processing and related issues, such as parallel algorithms. Parallel processing involves utilizing several factors, such as parallel architectures, parallel algorithms, parallel programming lan guages and performance analysis, which are strongly interrelated. In general, four steps are involved in performing a computational problem in parallel. The first step is to understand the nature of computations in the specific application domain.







Parallel Algorithms


Book Description

Focusing on algorithms for distributed-memory parallel architectures, Parallel Algorithms presents a rigorous yet accessible treatment of theoretical models of parallel computation, parallel algorithm design for homogeneous and heterogeneous platforms, complexity and performance analysis, and essential notions of scheduling. The book extract




Sequential and Parallel Algorithms and Data Structures


Book Description

This textbook is a concise introduction to the basic toolbox of structures that allow efficient organization and retrieval of data, key algorithms for problems on graphs, and generic techniques for modeling, understanding, and solving algorithmic problems. The authors aim for a balance between simplicity and efficiency, between theory and practice, and between classical results and the forefront of research. Individual chapters cover arrays and linked lists, hash tables and associative arrays, sorting and selection, priority queues, sorted sequences, graph representation, graph traversal, shortest paths, minimum spanning trees, optimization, collective communication and computation, and load balancing. The authors also discuss important issues such as algorithm engineering, memory hierarchies, algorithm libraries, and certifying algorithms. Moving beyond the sequential algorithms and data structures of the earlier related title, this book takes into account the paradigm shift towards the parallel processing required to solve modern performance-critical applications and how this impacts on the teaching of algorithms. The book is suitable for undergraduate and graduate students and professionals familiar with programming and basic mathematical language. Most chapters have the same basic structure: the authors discuss a problem as it occurs in a real-life situation, they illustrate the most important applications, and then they introduce simple solutions as informally as possible and as formally as necessary so the reader really understands the issues at hand. As they move to more advanced and optional issues, their approach gradually leads to a more mathematical treatment, including theorems and proofs. The book includes many examples, pictures, informal explanations, and exercises, and the implementation notes introduce clean, efficient implementations in languages such as C++ and Java.