Fossil Echinoids of Texas


Book Description










Disarticulation and Preservation of Fossil Echinoderms: Recognition of Ecological-Time Information in the Echinoderm Fossil Record


Book Description

The history of life on earth is largely reconstructed from time-averaged accumulations of fossils. A glimpse at ecologic-time attributes and processes is relatively rare. However, the time-sensitive and predictability of echinoderm disarticulation makes them model organisms to determine post-mortem transportation and allows recognition of ecological-time data within paleocommunity accumulations. Unlike many other fossil groups, this has allowed research on many aspects of echinoderms and their paleocommunities, such as the distribution of soft tissues, assessment of the amount of fossil transportation prior to burial, determination of intraspecific variation, paleocommunity composition, estimation of relative abundance of taxa in paleocommunities, determination of attributes of niche differentiation, etc. Crinoids and echinoids have received the most amount of taphonomic research, and the patterns present in these two groups can be used to develop a more thorough understanding of all echinoderm clades.







Fossil Echinoids of Texas


Book Description




Echinoderm Paleobiology


Book Description

The dominant faunal elements in shallow Paleozoic oceans, echinoderms are important to understanding these marine ecosystems. Echinoderms (which include such animals as sea stars, crinoids or sea lilies, sea urchins, sand dollars, and sea cucumbers) have left a rich and, for science, extremely useful fossil record. For various reasons, they provide the ideal source for answers to the questions that will help us develop a more complete understanding of global environmental and biodiversity changes. This volume highlights the modern study of fossil echinoderms and is organized into five parts: echinoderm paleoecology, functional morphology, and paleoecology; evolutionary paleoecology; morphology for refined phylogenetic studies; innovative applications of data encoded in echinoderms; and information on new crinoid data sets.




The Fossil Echinoidea


Book Description