Integrated Energy Systems (IES) for Buildings


Book Description

Integrated Energy Systems (IES) combine on-site power or distributed generation technologies with thermally activated technologies to provide cooling, heating, humidity control, energy storage and/or other process functions using thermal energy normally wasted in the production of electricity/power. IES produce electricity and byproduct thermal energy onsite, with the potential of converting 80 percent or more of the fuel into useable energy. IES have the potential to offer the nation the benefits of unprecedented energy efficiency gains, consumer choice and energy security. It may also dramatically reduce industrial and commercial building sector carbon and air pollutant emissions and increase source energy efficiency. Applications of distributed energy and Combined heat and power (CHP) in ''Commercial and Institutional Buildings'' have, however, been historically limited due to insufficient use of byproduct thermal energy, particularly during summer months when heating is at a minimum. In recent years, custom engineered systems have evolved incorporating potentially high-value services from Thermally Activated Technologies (TAT) like cooling and humidity control. Such TAT equipment can be integrated into a CHP system to utilize the byproduct heat output effectively to provide absorption cooling or desiccant humidity control for the building during these summer months. IES can therefore expand the potential thermal energy services and thereby extend the conventional CHP market into building sector applications that could not be economically served by CHP alone. Now more than ever, these combined cooling, heating and humidity control systems (IES) can potentially decrease carbon and air pollutant emissions, while improving source energy efficiency in the buildings sector. Even with these improvements over conventional CHP systems, IES face significant technological and economic hurdles. Of crucial importance to the success of IES is the ability to treat the heating, ventilation, air conditioning, water heating, lighting, and power systems loads as parts of an integrated system, serving the majority of these loads either directly or indirectly from the CHP output. The CHP Technology Roadmaps (Buildings and Industry) have focused research and development on a comprehensive integration approach: component integration, equipment integration, packaged and modular system development, system integration with the grid, and system integration with building and process loads. This marked change in technology research and development has led to the creation of a new acronym to better reflect the nature of development in this important area of energy efficiency: Integrated Energy Systems (IES). Throughout this report, the terms ''CHP'' and ''IES'' will sometimes be used interchangeably, with CHP generally reserved for the electricity and heat generating technology subsystem portion of an IES. The focus of this study is to examine the potential for IES in buildings when the system perspective is taken, and the IES is employed as a dynamic system, not just as conventional CHP. This effort is designed to determine market potential by analyzing IES performance on an hour-by-hour basis, examining the full range of building types, their loads and timing, and assessing how these loads can be technically and economically met by IES.







Sustainable On-Site CHP Systems: Design, Construction, and Operations


Book Description

PROVEN TECHNIQUES FOR REDUCING ENERGY USE WITH CHP SYSTEMS Plan, design, construct, and operate a sustainable on-site CHP (combined heat and power) facility using the detailed information in this practical guide. Sustainable On-Site CHP Systems reveals how to substantially increase the energy efficiency in commercial, industrial, institutional, and residential buildings using waste heat and thermal energy from power generation equipment for cooling, heating, and humidity control. In-depth case studies illustrate real-world applications of CHP systems. Coverage includes: CHP basics, power equipment, and thermal design Packaged CHP systems Regulatory issues Carbon footprint, environmental benefits, and emission controls Conducting a feasibility study and economic analysis CHP plant design and engineering Construction, permits, and risk management Operation and maintenance Performance monitoring and improvement




Small and Micro Combined Heat and Power (CHP) Systems


Book Description

Small and micro combined heat and power (CHP) systems are a form of cogeneration technology suitable for domestic and community buildings, commercial establishments and industrial facilities, as well as local heat networks. One of the benefits of using cogeneration plant is a vastly improved energy efficiency: in some cases achieving up to 80–90% systems efficiency, whereas small-scale electricity production is typically at well below 40% efficiency, using the same amount of fuel. This higher efficiency affords users greater energy security and increased long-term sustainability of energy resources, while lower overall emissions levels also contribute to an improved environmental performance. Small and micro combined heat and power (CHP) systems provides a systematic and comprehensive review of the technological and practical developments of small and micro CHP systems. Part one opens with reviews of small and micro CHP systems and their techno-economic and performance assessment, as well as their integration into distributed energy systems and their increasing utilisation of biomass fuels. Part two focuses on the development of different types of CHP technology, including internal combustion and reciprocating engines, gas turbines and microturbines, Stirling engines, organic Rankine cycle process and fuel cell systems. Heat-activated cooling (i.e. trigeneration) technologies and energy storage systems, of importance to the regional/seasonal viability of this technology round out this section. Finally, part three covers the range of applications of small and micro CHP systems, from residential buildings and district heating, to commercial buildings and industrial applications, as well as reviewing the market deployment of this important technology. With its distinguished editor and international team of expert contributors, Small and micro combined heat and power (CHP) systems is an essential reference work for anyone involved or interested in the design, development, installation and optimisation of small and micro CHP systems. Reviews small- and micro-CHP systems and their techno-economic and performance assessment Explores integration into distributed energy systems and their increasing utilisation of biomass fuels Focuses on the development of different types of CHP technology, including internal combustion and reciprocating engines




VOCGEN


Book Description

VOCGEN represents a niche energy market, a unique cogeneration economic model for industrial operations and a path to sustainable manufacturing and jobs. VOCGEN a true technical solution that can cost-effectively achieve President Obama's goals to reduce greenhouse gases, ground-level ozone and toxic air emissions to the lowest levels ever achieved in the United States and internationally. Help support the VOCGEN commercialization effort and buy the book "VOCGEN" today!







Annual Energy Outlook


Book Description