Topics on Nonlinear Wave-Plasma Interaction


Book Description

The text presented here is an extended english version of a report by the authors which appeared in April 1983 at the Institute of Cosmical Research of the Academy of Sciences of the GDR in German. It covers several selected topics on nonlinear wave-plasma interactio,ll in a treatment based on a hydrodynamic plasma description. Thus, no attempt has been made to give a comprehensive view on all aspects of the interaction of strong electromagnetic waves with plasmas. The text is partly introductory and presents partly current results. The authors hope that it will be of interest to students and scientists not only in the field of plasma physics. The authors thank Akademie-Verlag, Berlin and Birkhiiuser-Verlag, Basel for their encouragement to prepare the English manuscript and Mrs. Ch. Geier for carefully typing the final off-set version. Klaus Baumgiirtel Konrad Sauer Berlin, in April 1986 Contents Preface 5 Introduction 9 General References 13 Part I Basic equations 15 1 Hydrodynamic plasma description 15 2 Basic equations for high-frequency processes 19 3 Basic equations for low-frequency processes 25 References 28 Part n Elements of linear wave propagation 31 4 Linear wave propagation in plasmas 31 4. 1 Linear wave equation 4. 2 Penetration of a plasma by an electromagnetic wave 34 4. 3 Resonance absorption 38 References 43 5 Structure resonances 45 5. 1 Resonances at s-polarization 46 56 5. 2 Sl'l'face wave resonances 5.




The Nonlinear Interaction of an Electromagnetic Wave with a Time-dependent Plasma Medium


Book Description

A one-dimensional, inhomogeneous model is used to describe the nonlinear interaction of a radiofrequency plane wave with a time-varying plasma medium. A nonlinear constitutive relationship is derived relating the macroscopic-current density to the impressed electric vector, assuming that the wave field is almost monochromatic in the medium. The time-dependent response of the plasma medium may be found by numerically solving the energy-balance equations and the continuity equation for the electron gas. The electron temperature is expressed in the form of a difference equation where the effects of the thermal conductivity of the electron gas may be included. The spread in frequency of the electromagnetic wave field due to the time-varying electrical conductivity may be computed by employing the WKB approximation as a solution to the wave equation for a time-varying medium. (Author).




The Dissipation of Electromagnetic Waves in Plasmas


Book Description

This anthology includes articles on experimental studies of the interaction of high-power electromag netic waves with collisionless plasmas and with electrons. The nonlinear interaction of waves with plasmas has been investigated both under free space conditions and in waveguides. A study of secondary-emission dis charges was made in order to ascertain their possible effect on measurements in waveguides. The results presented here on the interaction of high-power waves with plasmas and electrons are of interest to a wide range of physicists and engineers concerned with various questions on the interaction of electromagnetic radiation with plasmas, including microwave heating of plasmas and laser fusion. v CONTENTS An Experimental Investigation of Nonlinear Dissipation of Electromagnetic Waves in Inhomogeneous Collisionless Plasmas - G.M. Batanov and V.A. SHin ... 1 Collisionless Absorption of Electromagnetic Waves in Plasmas and "Slow" Nonlinear Phenomena - V. 1. Barinov, 1. R. Gekker, V.A. Ivanov, and D.M. Karfidov. ... 25 ... Nonlinear Effects in the Propagation of Electron Plasma Waves in an Inhomogeneous Plasma Layer - V.A. SHin ..." ... 53 A Study of Secondary-Emission Microwave Discharges with Large Electron Transit Angles - L.V. Grishin, A.A. Dorofeyuk, 1. A. Kossyi, G.S. Luk'yanchikov, and M.M. Savchenko ... ... 63 ...










Radio Frequency Propagation Through an Inhomogeneous, Magnetoactive, Nonlinear Plasma Medium


Book Description

The Boltzmann equation corresponding to an electromagnetic wave propagating in a magnetoactive plasma is solved by making a spherical harmonic expansion of the electron distribution function. The problem of a plane, monochromatic wave normally incident upon a nonlinear, anisotropic, inhomogeneous plasma slab is also considered.