Theinfluence of the Cross Section Shape on Channel Flow: Modeling, Simulation and Experiment


Book Description

Physical models of physiological flow-induced phenomena, such as blood flow through a stenosis or air flow during human speech production, often rely on a quasi-one-dimensional or two-dimensional flow model, so that details of the cross section shape are neglected. Nevertheless, boundary layer development is known to depend on the cross section shape. The aim of this thesis is to model, simulate and characterize the potential impact of the cross section shape for pressure-driven laminar channel flow without and with constriction. Stretched coordinates are introduced to obtain viscous flow solutions for channels with an arbitrary cross section. The proposed cross section shape parametrization is applied to solve physical equations for two-dimensional and three-dimensional shapes. A simplified quasi-three-dimensional flow model, which accounts for kinetic losses, viscosity and the cross section shape, is presented and applied to describe the flow through a stenosis. Finally, flow data are gathered experimentally and numerically in order to characterize the influence of the cross section shape in the case of a constricted channel. Modeled, experimental and numerical data are compared.






















NBS Special Publication


Book Description