Emergent Nonlinear Phenomena in Bose-Einstein Condensates


Book Description

This book, written by experts in the fields of atomic physics and nonlinear science, covers the important developments in a special aspect of Bose-Einstein condensation, namely nonlinear phenomena in condensates. Topics covered include bright, dark, gap and multidimensional solitons; vortices; vortex lattices; optical lattices; multicomponent condensates; mathematical methods/rigorous results; and the beyond-the-mean-field approach.




Dark-bright Solitons and Vortices in Bose-Einstein Condensates


Book Description

This dissertation focuses on the properties of nonlinear waves in Bose-Einstein condensates (BECs). The fundamental model here is the nonlinear Schrodinger equation, the so-called Gross-Pitaevskii (GP) equation, which is a mean-field description of BECs. The systematic analysis begins by considering the dark-bright (DB)-soliton interactions and multiple-dark-bright-soliton complexes in atomic two-component BECs. The interaction between two DB solitons in a homogeneous condensate and at the presence of the trap are both considered. Our analytical approximation relies in a Hamiltonian perturbation theory, which leads to an equation of motion of the centers of DB-soliton interacting pairs. Employing this equation, we demonstrate the existence of robust DB-soliton molecules, in the form of stationary two- and three-DB-soliton states. Also the equilibrium distance of the constituent solitons and the corresponding oscillation frequencies are found semianalytically, where the latter corresponds to the characteristic anomalous modes' eigenfrequencies that we numerically computed via a so called Bogoliubov-de Gennes (BdG) linearization analysis. Those studies are discussed in Chapter 2. Then, we extend our studies to the dynamics of dark-bright (DB) solitons in binary BECs at finite temperature using a system of two-coupled dissipative GPs. We show that the effect of the bright soliton is to partially stabilize dark solitons against temperature-induced dissipation, thus providing longer lifetimes in Chapter 3. Furthermore, the dark-dark (DD) solitons as a prototypical coherent structure that emerges in two-component BECs are studied and are connected to dark-bright (DB) solitons via SO(2) rotation. We obtained their beating frequency and their frequency of oscillation inside a parabolic trap. They are identified as exact periodic orbits in the Manakov limit of equal inter- and intra- species nonlinearity strengths with and without the trap and we showcase the persistence of such states upon weak deviations from this limit. Also we investigated in detail the effect of the deviation from the Manakov case by considering different from unity scattering length ratios in Chapter 4. Next, we revisited Hamiltonian eigenvalue problems that typically arise in the linearization around a stationary state of a Hamiltonian nonlinear PDE. Also we presented a overview of the known facts for the eigenvalue counts of the corresponding unstable spectra. In particular, we focused on a straightforward plan to implement finite-dimensional techniques for locating this spectrum via the singular points of the meromorphic Krein Matrix and illustrated the value of the approach by considering realistic problems for recently observed experimentally multivortex and multisoliton solutions in atomic Bose-Einstein condensates in Chapter 5. In the two dimensional scenario, we also examine the stability and dynamics of vortices under the effect of dissipation used as a simplified model for the inclusion of the effect of finite temperatures in atomic BECs, which enables an analytical prediction that can be compared directly to numerical results in Chapter 6. In all the above studies, our analytical prediction from the equation of motion are in good agreement with the numerical results from the BdG analysis.







Theoretical Investigations of Trapped Interacting Bose-Einstein Condensates


Book Description

Long-term Research Objective: This program supports theoretical investigations of the quantum degenerate systems of trapped and interacting atomic gas. Primary topics being addressed are: (1) To understand the properties of atomic Bose-Einstein condensates, in particular, the low energy excitations, dynamics of Bose-Einstein condensation, vortex states creation and detection. (2) Theoretical prospects for quantum degeneracy and the realization of BCS states for interacting fermionic atoms, and the understanding their properties. (3) Theoretical proposals for realizing practical coherent matter wave creation and output devices, the physics of atom lasers. S & T Objectives: Theoretical understanding of the quantum statistical behavior of trapped low temperature atom cloud and the development of atom laser theory. Approach: The theoretical studies require us to combine theoretical tools developed in the area of atomic physics, many-body statistical physics, and quantum optics. Numerical methods are developed for the solution of the low energy atomic scattering in the presence of an anisotropic interaction potential.




Soliton Management in Periodic Systems


Book Description

During the past ten years, there has been intensive development in theoretical and experimental research of solitons in periodic media. This book provides a unique and informative account of the state-of-the-art in the field. The volume opens with a review of the existence of robust solitary pulses in systems built as a periodic concatenation of very different elements. Among the most famous examples of this type of systems are the dispersion management in fiber-optic telecommunication links, and (more recently) photonic crystals. A number of other systems belonging to the same broad class of spatially periodic strongly inhomogeneous media (such as the split-step and tandem models) have recently been identified in nonlinear optics, and transmission of solitary pulses in them was investigated in detail. Similar soliton dynamics occurs in temporal-domain counterparts of such systems, where they are subject to strong time-periodic modulation (for instance, the Feshbach-resonance management in Bose-Einstein condensates). Basis results obtained for all these systems are reviewed in the book. This timely work will serve as a useful resource for the soliton community.




Bose-einstein Condensation - From Atomic Physics To Quantum Fluids, Procs Of The 13th Physics Summer Sch


Book Description

Bose-Einstein condensation of dilute gases is an exciting new field of interdisciplinary physics. The eight chapters in this volume introduce its theoretical and experimental foundations. The authors are lucid expositors who have also made outstanding contributions to the field. They include theorists Tony Leggett, Allan Griffin and Keith Burnett, and Nobel-Prize-winning experimentalist Bill Phillips. In addition to the introductory material, there are articles treating topics at the forefront of research, such as experimental quantum phase engineering of condensates, the “superchemistry” of interacting atomic and molecular condensates, and atom laser theory.




Bose–Einstein Condensation in Dilute Gases


Book Description

Since an atomic Bose-Einstein condensate, predicted by Einstein in 1925, was first produced in the laboratory in 1995, the study of ultracold Bose and Fermi gases has become one of the most active areas in contemporary physics. This book explains phenomena in ultracold gases from basic principles, without assuming a detailed knowledge of atomic, condensed matter, and nuclear physics. This new edition has been revised and updated, and includes new chapters on optical lattices, low dimensions, and strongly-interacting Fermi systems. This book provides a unified introduction to the physics of ultracold atomic Bose and Fermi gases for advanced undergraduate and graduate students, as well as experimentalists and theorists. Chapters cover the statistical physics of trapped gases, atomic properties, cooling and trapping atoms, interatomic interactions, structure of trapped condensates, collective modes, rotating condensates, superfluidity, interference phenomena, and trapped Fermi gases. Problems are included at the end of each chapter.




Localisation of Bose-Einstein Condensates in Optical Lattices


Book Description

The properties of Bose-Einstein condensates can be studied and controlled effectively when trapped in optical lattices formed by two counter-propagating laser beams. The dynamics of Bose-Einstein condensates in optical lattices are well-described by a continuous model using the Gross-Pitaevskii equation in a modulated potential or, in the case of deep potentials, a discrete model using the Discrete Nonlinear Schrodinger equation. Spatially localised modes, known as lattice solitons in the continuous model, or discrete breathers in the discrete model, can occur and are the focus of this thesis. Theoretical and computational studies of these localised modes are investigated in three different situations. Firstly, a model of a Bose-Einstein condensate in a ring optical lattice with atomic dissipations applied at a stationary or at a moving location on the ring is presented in the continuous model. The localised dissipation is shown to generate and stabilise both stationary and traveling lattice solitons. The solutions generated include spatially stationary quasiperiodic lattice solitons and a family of traveling lattice solitons with two intensity peaks per potential well with no counterpart in the discrete case. Collisions between traveling and stationary lattice solitons as well as between two traveling lattice solitons display a dependence on the lattice depth. Then, collisions with a potential barrier of either travelling lattice solitons or travelling discrete breathers are investigated along with their dependence on the height of the barrier. Regions of complete reection or of partial reflection where the incoming soliton/breather is split in two, are observed and understood interms of the soliton properties. Partial trapping of the atoms in the barrier is observed for positive barrier heights due to the negative effective mass of the solitons/breathers. Finally, two coupled discrete nonlinear Schrodinger equations can describe the interaction and collisions of breathers in two-species Bose-Einstein condensates in deep optical lattices. This is done for two cases of experimental relevance: a mixture of two ytterbium isotopes and a mixture of Rubidium (87Rb) and Potassium(41K) atoms. Depending on their initial separation, interaction between stationary breathers of different species can lead to the formation of symbiotic localised structures or transform one of the breathers from a stationary one into a travelling one. Collisions between travelling and stationary discrete breathers composed of different species are separated in four distinct regimes ranging from totally elastic when the interspecies interaction is highly attractive to mutual destruction when the interaction is suffciently large and repulsive.




Schrödinger Equations in Nonlinear Systems


Book Description

This book explores the diverse types of Schrödinger equations that appear in nonlinear systems in general, with a specific focus on nonlinear transmission networks and Bose–Einstein Condensates. In the context of nonlinear transmission networks, it employs various methods to rigorously model the phenomena of modulated matter-wave propagation in the network, leading to nonlinear Schrödinger (NLS) equations. Modeling these phenomena is largely based on the reductive perturbation method, and the derived NLS equations are then used to methodically investigate the dynamics of matter-wave solitons in the network. In the context of Bose–Einstein condensates (BECs), the book analyzes the dynamical properties of NLS equations with the external potential of different types, which govern the dynamics of modulated matter-waves in BECs with either two-body interactions or both two- and three-body interatomic interactions. It also discusses the method of investigating both the well-posedness and the ill-posedness of the boundary problem for linear and nonlinear Schrödinger equations and presents new results. Using simple examples, it then illustrates the results on the boundary problems. For both nonlinear transmission networks and Bose–Einstein condensates, the results obtained are supplemented by numerical calculations and presented as figures.