Nonlinear Optical Materials: Principles and Applications


Book Description

Nonlinear optical materials play a pivotal role in the future evolution of nonlinear optics in general and its impact in technology and industrial applications in particular. The progress in nonlinear optics has been tremendous since the first demonstration of an all-optical nonlinear effect in the early sixties, but until recently the main visible emphasis was on the physical aspects of the nonlinear radiation matter interaction. In the last decade, however, this effort has also brought its fruits in applied aspects of nonlinear optics. This can be essentially traced to the improvement of the performances of the nonlinear optical materials. Our understanding of the nonlinear polarization mechanisms and their relation to the structural characteristics of the materials has been considerably improved. In addition, the new development of techniques for the fabrication and growth of artificial materials has dramatically contributed to this evolution. The goal is to find and develop materials presenting large nonlinearities and satisfying at the same time all the technological requirements for applications such as wide transparency range, fast response, high damage threshold but also processability, adaptability and interfacing with other materials. Improvements, besides rendering possible the implementation of nonlinear effects in devices, open the way to the study of new nonlinear optical effects and the introduction of new concepts. This book describes new concepts which are emerging in the field of nonlinear optical materials, concentrating the attention on materials which seem more promising for applications in the technology of information transmission and processing.




Optoelectronic Properties of Inorganic Compounds


Book Description

This book is intended to offer the reader a snapshot of the field of optoelectronic materials from the viewpoint of inorganic chemists. The field of inorganic chemistry is transforming from one focused on the synthesis of compounds having interesting coordination numbers, structures, and stereochemistries, to one focused on preparing compounds that have potentially useful practical applica tions. Two such applications are in the area of optics and electronics. These are fields where the use of inorganic materials has a long history. As the field of microelectronics develops the demands on the performance of such materials increases, and it becomes necessary to discover compounds that will meet these demands. The field of optoelectronics represents a merging of the two disciplines. Its emergence is a natural one because many of the applications involve both of these properties, and also because the electronic structure of a metal compound that confers novel optical properties is often one that also influences its electron transfer and conductivity characteristics. Two of the more important growth areas that have led to these developments are communications and medicine. Within the communications field there is the microelectronics that is involved in information storage and transmittal, some of which will be transferred into the optical regime. Within the medical field there are chemical probes that transmit analytical information from an in vivo environment. This information needs to be readily accessible from an external site, and then quickly converted into images or data that yield accurate and inexpensive diagnoses.