THREE-DIMENSIONAL IGNITION AND GROWTH REACTIVE FLOW MODELING OF PRISM FAILURE TESTS ON PBX 9502


Book Description

The Ignition and Growth reactive flow model for shock initiation and detonation of solid explosives based on triaminotirnitrobenzene (TATB) is applied to three-dimensional detonation wave propagation. The most comprehensive set of three-dimensional detonation wave propagation data is that measured using the trapezoidal prism test. In this test, a PBX 9501 (95% HMX, 2.5% Estane, and 2.5% BDNPA/F) line detonator initiates a detonation wave along the trapezoidal face of a PBX 9502 (95% TATB and 5% Kel-F binder) prism. The failure thickness, which has been shown experimentally to be roughly half of the failure diameter of a long cylindrical charge, is measured after 50 mm of detonation wave propagation by impact with an aluminum witness plate. The effects of confinement impedance on the PBX 9502 failure thickness have been measured using air (unconfined), water, PMMA, magnesium, aluminum, lead, and copper placed in contact with the rectangular faces of the prism parallel to the direction of detonation propagation. These prism test results are modeled using the two-dimensional PBX 9502 Ignition and Growth model parameters determined by calculating failure diameter and tested on recent corner turning experiments. Good agreement between experimentally measured and calculated prism failure thicknesses for unconfined and confined PBX 9502 is reported.




Shock Waves Science and Technology Library, Vol. 6


Book Description

This book, as a volume of the Shock Wave Science and Technology Reference Library, is primarily concerned with the fundamental theory of detonation physics in gaseous and condensed phase reactive media. The detonation process involves complex chemical reaction and fluid dynamics, accompanied by intricate effects of heat, light, electricity and magnetism - a contemporary research field that has found wide applications in propulsion and power, hazard prevention as well as military engineering. The seven extensive chapters contained in this volume are: - Chemical Equilibrium Detonation (S Bastea and LE Fried) - Steady One-Dimensional Detonations (A Higgins) - Detonation Instability (HD Ng and F Zhang) - Dynamic Parameters of Detonation (AA Vasiliev) - Multi-Scaled Cellular Detonation (D Desbordes and HN Presles) - Condensed Matter Detonation: Theory and Practice (C Tarver) - Theory of Detonation Shock Dynamics (JB Bdzil and DS Stewart) The chapters are thematically interrelated in a systematic descriptive approach, though, each chapter is self-contained and can be read independently from the others. It offers a timely reference of theoretical detonation physics for graduate students as well as professional scientists and engineers.




Reactive Flow Modeling of the Interaction of TATB Detonation Waves with Inert Materials


Book Description

The Ignition & Growth model for the shock initiation and detonation of solid explosives is applied to calculating the main features of detonation waves in the triaminotrinitrobenzene (TATB) based high explosives LX-17, PBX 9502 and EDC-35. Under detonation conditions, TATB based explosives exhibit reaction zone lengths of 2 to 3 mm depending on the interactions between the detonation wave and the surrounding inert materials. This paper describes comparisons of Ignition & Growth calculations with data from several two- and three-dimensional experiments in which various materials are used to confine the TATB based explosives. The calculated unconfined failure diameters of PBX 9502 are normalized to the measured values at five initial temperatures. Failure diameters for LX-17 are then estimated by changing only the fraction ignited near the shock front. Fabry-Perot data on spherically divergent LX-17 snowball experiments is also compared to calculations. Calculated detonation velocities, wave front curvatures, and metal acceleration velocities are compared to experimental detonation data for TATB-based high explosives in tantalum, copper, PMMA, brass, and beryllium confinement. Three-dimensional prism failure test results on PBX 9502 are also stimulated using the ALE3D code.




Proceedings


Book Description







Explosive Effects and Applications


Book Description

This is a broad-based text on the fundamentals of explosive behavior and the application of explosives in civil engineering, industrial processes, aerospace applications, and military uses.




High Energy Materials


Book Description

Authored by an insider with over 40 years of high energy materials (HEMs) experience in academia, industry and defense organizations, this handbook and ready reference covers all important HEMs from the 1950s to the present with their respective properties and intended purposes. Written at an attainable level for professionals, engineers and technicians alike, the book provides a comprehensive view of the current status and suggests further directions for research and development. An introductory chapter on the chemical and thermodynamic basics allows the reader to become acquainted with the fundamental features of explosives, before moving on to the important safety aspects in processing, handling, transportation and storage of high energy materials. With its collation of results and formulation strategies hitherto scattered in the literature, this should be on the shelf of every HEM researcher and developer.




Discharge in Long Air Gaps


Book Description

'Discharge in Long Air Gaps' presents self-consistent predictive dynamic models of positive and negative discharges in long air gaps. Equivalent models are also derived to predict lightning parameters based on the similarities between long air gap discharges and lightning flashes. Comparisons between computed and experimental results for various test configurations are presented and discussed.




Structure and Properties of Energetic Materials: Volume 296


Book Description

The MRS Symposium Proceeding series is an internationally recognised reference suitable for researchers and practitioners.




Blast Mitigation


Book Description

Blast Mitigation: Experimental and Numerical Studies covers both experimental and numerical aspects of material and structural response to dynamic blast loads and its mitigation. The authors present the most up-to-date understanding from laboratory studies and computational analysis for researchers working in the field of blast loadings and their effect on material and structural failure, develop designs for lighter and highly efficient structural members for blast energy absorption, discuss vulnerability of underground structures, present methods for dampening blast overpressures, discuss structural post blast collapse and give attention to underwater explosion and implosion effects on submerged infrastructure and mitigation measures for this environment.