Pharmaceutical Powder Compaction Technology


Book Description

Compaction of powder constituents-both active ingredient and excipients-is examined to ensure consistent and reproducible disintegration and dispersion profiles. Revised to reflect modern pharmaceutical compacting techniques, this second edition of Pharmaceutical Powder Compaction Technology guides pharmaceutical engineers, formulation scientists,




The Uniaxial Compression of Powders


Book Description

POWDERS, COMPRESSIVE STRENGTH, PHARMACEUTICAL MATERIALS, MECHANICAL PROPERTIES, COMPACTION, DRUGS, LOADING, PHYSICAL PROPERTIES, MEASURING INSTRUMENTS.




Chemical Engineering in the Pharmaceutical Industry


Book Description

A guide to the important chemical engineering concepts for the development of new drugs, revised second edition The revised and updated second edition of Chemical Engineering in the Pharmaceutical Industry offers a guide to the experimental and computational methods related to drug product design and development. The second edition has been greatly expanded and covers a range of topics related to formulation design and process development of drug products. The authors review basic analytics for quantitation of drug product quality attributes, such as potency, purity, content uniformity, and dissolution, that are addressed with consideration of the applied statistics, process analytical technology, and process control. The 2nd Edition is divided into two separate books: 1) Active Pharmaceutical Ingredients (API’s) and 2) Drug Product Design, Development and Modeling. The contributors explore technology transfer and scale-up of batch processes that are exemplified experimentally and computationally. Written for engineers working in the field, the book examines in-silico process modeling tools that streamline experimental screening approaches. In addition, the authors discuss the emerging field of continuous drug product manufacturing. This revised second edition: Contains 21 new or revised chapters, including chapters on quality by design, computational approaches for drug product modeling, process design with PAT and process control, engineering challenges and solutions Covers chemistry and engineering activities related to dosage form design, and process development, and scale-up Offers analytical methods and applied statistics that highlight drug product quality attributes as design features Presents updated and new example calculations and associated solutions Includes contributions from leading experts in the field Written for pharmaceutical engineers, chemical engineers, undergraduate and graduation students, and professionals in the field of pharmaceutical sciences and manufacturing, Chemical Engineering in the Pharmaceutical Industry, Second Edition contains information designed to be of use from the engineer's perspective and spans information from solid to semi-solid to lyophilized drug products.







Pharmaceutical Powder ComPattion Technology


Book Description

This unique reference examines the modern pharmaceutical compacting techniques used to form tablets out of powders-describing the physical structure of pharmaceutical compacts, the bonding phenomena that occur during powder compaction, and the compression mechanisms of pharmaceutical particles.







Modelling of Powder Die Compaction


Book Description

Manufacture of components from powders frequently requires a compaction step. Modelling of Powder Die Compaction presents a number of case studies that have been developed to test compaction models. It will be bought by researchers involved in developing models of powder compaction as well as by those working in industry, either using powder compaction to make products or using products made by powder compaction.




Investigation of Compaction Behavior of Pharmaceutical Powders


Book Description

Pharmaceutical product development has evolved from conventional empirical approach towards the more systematic and science based approach over the past decades. However, the process of tableting and compaction behavior of pharmaceutical powders is still ambiguous and not well understood. In the present study, a comprehensive attempt has been made to understand this complex and dynamic process of compaction of disordered pharmaceutical powders using percolation phenomenon. Commonly used pharmaceutical powder materials, spheres and their binary mixtures of different particle sizes, crystal structure and deformation behavior were compressed at varying compression loads at different relative densities. Mechanical strength of tablets, namely radial tensile strength, compressive strength and elastic modulus, were evaluated and studied according to the classical models of powder compaction and percolation phenomenon. It was found that percolation phenomenon has a significant effect on the compaction of powder materials and can be used to characterize deformation and bonding behavior of powder materials. A model developed on the fundamentals of percolation theory was found to predict the compactibility of disordered powder materials and their binary mixtures with higher accuracy compared to the established classical compaction models. Moreover, it was found that the developed model can predict the dilution capacity of excipients and can be used as a material-sparing tool in the initial formulation development of tablet dosage forms. It was also found that percolation theory can help to understand mechanics of tablet formation more clearly by establishing a relationship between compressibility and compactibility phenomena of powder materials. Further, a closer look at tableting process reveals that process of tableting closely mimics 3-dimensional correlated diffusive percolation phenomenon with a universal critical exponent value of q = 2 and percolation thresholds, Ï1c = 0.634 (z = 12) and 0.366 (z = 6) depending on the type of material used. Similar results were also observed in the case of powders compacted using an industrial scale rotary tablet press thus confirming that tableting of pharmaceutical powders is far from an equilibrium process depending upon the variability of time and space. Thus it can be concluded that comprehensive application of percolation theory can serve as a single effective tool in the study of compaction behavior of pharmaceutical powders and can be effectively used in the current quality by design (QbD) practice to establish robust design space for the formulation development of tablet dosage forms.