Growth and Collapse of the Tibetan Plateau


Book Description

Despite agreement on first-order features and mechanisms, critical aspects of the origin and evolution of the Tibetan Plateau, such as the exact timing and nature of collision, the initiation of plateau uplift, and the evolution of its height and width, are disputed, untested or unknown. This book gathers papers dealing with the growth and collapse of the Tibetan Plateau. The timing, the underlying mechanisms, their interactions and the induced surface shaping, contributing to the Tibetan Plateau evolution are tightly linked via coupled and feedback processes. We present interdisciplinary contributions allowing insight into the complex interactions between lithospheric dynamics, topography building, erosion, hydrological processes and atmospheric coupling. The book is structured in four parts: early processes in the plateau formation; recent growth of the Tibetan Plateau; mechanisms of plateau growth; and plateau uplift, surface processes and the monsoon.




Special Publication 353 - Growth and Collapse of the Tibetan Plateau


Book Description

Despite agreement on first-order features and mechanisms, critical aspects of the origin and evolution of the Tibetan Plateau, such as the exact timing and nature of collision, the initiation of plateau uplift, and the evolution of its height and width, are disputed, untested or unknown. This book gathers papers dealing with the growth and collapse of the Tibetan Plateau. The timing, the underlying mechanisms, their interactions and the induced surface shaping, contributing to the Tibetan Plateau evolution are tightly linked via coupled and feedback processes. We therefore present cross-disciplinary contributions which allow insight into the complex interactions between lithospheric dynamics, topography building, erosion, hydrological processes and atmospheric coupling. The book is structured in four parts: early processes in the plateau formation; recent growth of the Tibetan Plateau; mechanisms of plateau growth; and plateau uplift, surface processes and the monsoon.










Mountain Geoecology and Sustainable Development of the Tibetan Plateau


Book Description

Intense uplift of the Tibetan Plateau in Late Cenozoic Era is one of the most important events in geological history of the Earth. The plateau offers an ideal region for studying of lithospheric formation and evolution, probing into the mechanism of crustal movement, and understanding of changes in environments and geo-ecosystems in Asia. Intense uplift ofthe plateau resulted in drastic changes of natural environment and apparent regional differentiation on the plateau proper and neighboring regions. The plateau therefore becomes a sensitive area of climate change in Asian monsoon region, which is closely related to the global change. As a special physical unit, its ecosystems occupy a prominent position in the world. Due to its extremely high elevation and great extent, natural types and characteristics of physical landscapes on the plateau are quite different from those in lowlands at comparable latitudes, and environments are also different from those in high latitudinal zones. Consequently, the Tibetan Plateau has been classified as one of three giant physical regions in China and considered as a unique unit on Earth. Scientific surveys and expeditions to the Tibetan Plateau on large scale began from 1950's. Amongst them, a number of comprehensive scientific expeditions to the Xizang (Tibet) Autonomous Region, Hengduan Mts. areas, Karakorum and Kunlun Mts. regions, as well as the Hoh Xii Mts. areas, have been successively carried out by the Integrated Scientific Expedition to Tibetan Plateau, sponsored by Chinese Academy of Sciences since 1973.




Himalayan Tectonics


Book Description

The Himalaya–Karakoram–Tibet mountain belt resulted from Cenozoic collision of India and Asia and is frequently used as the type example of a continental collision orogenic belt. The last quarter of a century has seen the publication of a remarkably detailed dataset relevant to the evolution of this belt. Detailed fieldwork backed up by state-of-the-art structural analysis, geochemistry, mineral chemistry, igneous and metamorphic petrology, isotope chemistry, sedimentology and geophysics produced a wide-ranging archive of data-rich scientific papers. The rationale for this book is to provide a coherent overview of these datasets in addressing the evolution of the mountain ranges we see today. This volume comprises 21 specially invited review papers on the Himalaya, Kohistan arc, Tibet, the Karakoram and Pamir ranges. These papers span the history of Himalayan research, chronology of the collision, stratigraphy, magmatic and metamorphic processes, structural geology and tectonics, seismicity, geophysics, and the evolution of the Indian monsoon. This landmark set of papers should underpin the next 25 years of Himalayan research.




Structural and Thermal Evolution of the Himalayan Thrust Belt in Midwestern Nepal


Book Description

"Spanning eight kilometers of topographic relief, the Himalayan fold-thrust belt in Nepal has accommodated more than 700 km of Cenozoic convergence between the Indian subcontinent and Asia. Rapid tectonic shortening and erosion in a monsoonal climate have exhumed greenschist to upper amphibolite facies rocks along with unmetamorphosed rocks, including a 5-6-km-thick Cenozoic foreland basin sequence. This Special Paper presents new geochronology, multisystem thermochronology, structural geology, and geological mapping of an approximately 37,000 km2 region in midwestern and western Nepal. This work informs enduring Himalayan debates, including how and where to map the Main Central thrust, the geometry of the seismically active basal Himalayan detachment, processes of tectonic shortening in the context of postcollisional India-Asia convergence, and long-term geodynamics of the orogenic wedge"--Publisher's website




The Asian Monsoon


Book Description

The Asian monsoon is one of the most dramatic climatic phenomena on Earth, with far-reaching environmental and societal effects. Almost two thirds of humanity lives within regions influenced by the monsoon. With the emerging Asian economies, the importance of the region to the global economy has never been more marked. The Asian Monsoon describes the evolution of the monsoon, and proposes a connection between the tectonic evolution of the solid Earth and monsoon intensity. The authors explain how the monsoon has been linked to orbital processes and thus to other parts of the global climate system, especially glaciation. Finally, they summarize how monsoon evolution since the last Ice Age has impacted human societies, as well as commenting on the potential impact of future climate change. This book presents a multi-disciplinary overview of the monsoon for advanced students and researchers in atmospheric science, climatology, oceanography, geophysics, and geomorphology.