Finite Strip Method in Structural Analysis


Book Description

Finite Strip Method in Structural Analysis is a concise introduction to the theory of the finite strip method and its application to structural engineering, with special reference to practical structures such as slab bridges and box girder bridges. Topics covered include the bending of plates and plate-beam systems, with application to slab-beam bridges; plane stress analysis; vibration and stability of plates and shells; and finite layer and finite prism methods. Comprised of eight chapters, this book begins with an overview of the theory of the finite strip method, highlighting the importance of the choice of suitable displacement functions for a strip as well as the formulation of strip characteristics. Subsequent chapters consider many different types of finite strips for plate and shell problems and present numerical examples. The extension of the finite strip method to three-dimensional problems is then described, with emphasis on the finite layer method and the finite prism method. The final chapter discusses some computer methods that are commonly used in structural analysis. A folded plate computer program is included for completeness, and a detailed description for a worked problem is also presented for the sake of clarity. This monograph will be of interest to civil and structural engineers.




The Finite Strip Method


Book Description

The increase in the popularity and the number of potential applications of the finite strip method has created a demand for a definitive text/reference on the subject. Fulfilling this demand, The Finite Strip Method provides practicing engineers, researchers, and students with a comprehensive introduction and theoretical development, and a complete treatment of current practical applications of the method. Written by experts who are arguably the world's leading authorities in the field, The Finite Strip Method covers both the classical strip and the newly developed spline strip and computed shape function strip. Applications in structural engineering, with particular focus on practical structures such as slab-beam bridges, box girder bridges, and tall buildings are discussed extensively. Applications in geotechnology are also covered, as are recently formulated applications in nonlinear analysis. The Finite Strip Method is a unique book, supplying much-needed information by well-known and highly regarded authors.




The Finite Strip Method


Book Description

The increase in the popularity and the number of potential applications of the finite strip method has created a demand for a definitive text/reference on the subject. Fulfilling this demand, The Finite Strip Method provides practicing engineers, researchers, and students with a comprehensive introduction and theoretical development, and a complete treatment of current practical applications of the method. Written by experts who are arguably the world's leading authorities in the field, The Finite Strip Method covers both the classical strip and the newly developed spline strip and computed shape function strip. Applications in structural engineering, with particular focus on practical structures such as slab-beam bridges, box girder bridges, and tall buildings are discussed extensively. Applications in geotechnology are also covered, as are recently formulated applications in nonlinear analysis. The Finite Strip Method is a unique book, supplying much-needed information by well-known and highly regarded authors.







Analysis and Design of Plated Structures


Book Description

Analysis and Design of Plated Structures: Stability, Second Edition covers the latest developments in new plate solutions and structural models for plate analysis. Completely revised and updated by its distinguished editors and international team of contributors, this edition also contains new chapters on GBT-based stability analysis and the finite strip and direct strength method (DSM). Other sections comprehensively cover bracing systems, storage tanks under wind loading, the analysis and design of light gauge steel members, applications of high strength steel members, cold-formed steel pallet racks, and the design of curved steel bridges. This is a comprehensive reference for graduate students, researchers and practicing engineers in the fields of civil, structural, aerospace, mechanical, automotive and marine engineering. Features new chapters on the stability behavior of composite plates such as laminated composite, functionally graded, and steel concrete composite plate structures Includes newly developed numerical simulation methods and new plate models Provides generalized beam theory for analyzing thin-walled structures




Finite Strip Analysis of Bridges


Book Description

In-depth, comprehensive and up-to-date information on the powerful finite strip method of analysis of bridges. It is in three parts. The first introduces the method and gives the necessary background. The second explains the evolution of the method and the third part provides detailed information on the application of the method to highway bridges.




Theories and Applications of Plate Analysis


Book Description

This book by a renowned structural engineer offers comprehensive coverage of both static and dynamic analysis of plate behavior, including classical, numerical, and engineering solutions. It contains more than 100 worked examples showing step by step how the various types of analysis are performed.




Nonlinear Analysis of Thin-Walled Smart Structures


Book Description

This book focuses on nonlinear finite element analysis of thin-walled smart structures integrated with piezoelectric materials. Two types of nonlinear phenomena are presented in the book, namely geometrical nonlinearity and material nonlinearity. Geometrical nonlinearity mainly results from large deformations and large rotations of structures. The book discusses various geometrically nonlinear theories including von Kármán type nonlinear theory, moderate rotation nonlinear theory, fully geometrically nonlinear theory with moderate rotations and large rotation nonlinear theory. The material nonlinearity mainly considered in this book is electroelastic coupled nonlinearity resulting from large driving electric field. This book will be a good reference for students and researchers in the field of structural mechanics.




Thin-Walled Structures


Book Description

This volume contains the papers presented at the Fourth International Conference of Thin-Walled Structures (ICTWS4), and contains 110 papers which, collectively, provide a comprehensive state-of-the-art review of the progress made in research, development and manufacture in recent years in thin-walled structures.The presentations at the conference had representation form 35 different countries and their topical areas of interest included aeroelastic response, structural-acoustic coupling, aerospace structures, analysis, design, manufacture, cold-formed structures, cyclic loading, dynamic loading, crushing, energy absorption, fatigue, fracture, damage tolerance, plates, stiffened panels, plated structures, polymer matrix composite members, sandwich structures, shell structures, thin-walled beams, columns and vibrational response. The range of applications of thin-walled structures has become increasingly diverse with a considerable deployment of thin-walled structural elements and systems being found in a wide range of areas within Aeronautical, Automotive, Civil, Mechanical, Chemical and Offshore Engineering fields. This volume is an extremely useful reference volume for researchers and designers working within a wide range of engineering disciplines towards the design, development and manufacture of efficient thin-walled structural systems.