Variational, Geometric, and Level Set Methods in Computer Vision


Book Description

This book constitutes the refereed proceedings of the Third International Workshop on Variational, Geometric and Level Set Methods in Computer Vision, VLSM 2005, held in Beijing, China in October 2005 within the scope of ICCV 2005, the International Conference on Computer Vision. The 30 revised full papers presented were carefully reviewed and selected for inclusion in the book. The papers are organized in topical sections and sub-sections as follows: image filtering and reconstruction - image enhancement, inpainting and compression; segmentation and grouping - model-free and model-based segmentation; registration and motion analysis - registration of curves and images, multi-frame segmentation; 3D and reconstruction - computational processes in manifolds, shape from shading, calibration and stereo reconstruction.




Variational, Geometric, and Level Set Methods in Computer Vision


Book Description

Mathematical methods has been a dominant research path in computational vision leading to a number of areas like ?ltering, segmentation, motion analysis and stereo reconstruction. Within such a branch visual perception tasks can either be addressed through the introduction of application-driven geometric ?ows or through the minimization of problem-driven cost functions where their lowest potential corresponds to image understanding. The 3rd IEEE Workshop on Variational, Geometric and Level Set Methods focused on these novel mathematical techniques and their applications to c- puter vision problems. To this end, from a substantial number of submissions, 30 high-quality papers were selected after a fully blind review process covering a large spectrum of computer-aided visual understanding of the environment. The papers are organized into four thematic areas: (i) Image Filtering and Reconstruction, (ii) Segmentation and Grouping, (iii) Registration and Motion Analysis and (iiii) 3D and Reconstruction. In the ?rst area solutions to image enhancement, inpainting and compression are presented, while more advanced applications like model-free and model-based segmentation are presented in the segmentation area. Registration of curves and images as well as multi-frame segmentation and tracking are part of the motion understanding track, while - troducing computationalprocessesinmanifolds,shapefromshading,calibration and stereo reconstruction are part of the 3D track. We hope that the material presented in the proceedings exceeds your exp- tations and will in?uence your research directions in the future. We would like to acknowledge the support of the Imaging and Visualization Department of Siemens Corporate Research for sponsoring the Best Student Paper Award.




Variational and Level Set Methods in Computer Vision


Book Description

Annotation Twenty-five papers from the July 2001 conference in Canada focus on recent innovations in computer vision applications, with attention to both the mathematical and computational frameworks involved. Specific papers address topics like restoration, registration, de-blurring, invariant edge completion, segmentation, 3D and level sets, and tracking. Papers and posters are both represented. Participants in a panel discussion are listed. Author index only. c. Book News Inc.




Scale Space and Variational Methods in Computer Vision


Book Description

This book constitutes the refereed proceedings of the Second International Conference on Scale Space Methods and Variational Methods in Computer Vision, SSVM 2009, emanated from the joint edition of the 5th International Workshop on Variational, Geometric and Level Set Methods in Computer Vision, VLSM 2009 and the 7th International Conference on Scale Space and PDE Methods in Computer Vision, Scale-Space 2009, held in Voss, Norway in June 2009. The 71 revised full papers presented were carefully reviewed and selected numerous submissions. The papers are organized in topical sections on segmentation and detection; image enhancement and reconstruction; motion analysis, optical flow, registration and tracking; surfaces and shapes; scale space and feature extraction.




Scale Space and Variational Methods in Computer Vision


Book Description

This book constitutes the proceedings of the 8th International Conference on Scale Space and Variational Methods in Computer Vision, SSVM 2021, which took place during May 16-20, 2021. The conference was planned to take place in Cabourg, France, but changed to an online format due to the COVID-19 pandemic. The 45 papers included in this volume were carefully reviewed and selected from a total of 64 submissions. They were organized in topical sections named as follows: scale space and partial differential equations methods; flow, motion and registration; optimization theory and methods in imaging; machine learning in imaging; segmentation and labelling; restoration, reconstruction and interpolation; and inverse problems in imaging.




Scale Space and Variational Methods in Computer Vision


Book Description

This book constitutes the refereed proceedings of the First International Conference on Scale Space Methods and Variational Methods in Computer Vision, SSVM 2007, emanated from the joint edition of the 4th International Workshop on Variational, Geometric and Level Set Methods in Computer Vision, VLSM 2007 and the 6th International Conference on Scale Space and PDE Methods in Computer Vision, Scale-Space 2007, held in Ischia Italy, May/June 2007.




Medical Image Computing and Computer-Assisted Intervention - MICCAI 2008


Book Description

The 11th International Conference on Medical Imaging and Computer Assisted Intervention, MICCAI 2008, was held at the Helen and Martin Kimmel Center of New York University, New York City, USA on September 6–10, 2008. MICCAI is the premier international conference in this domain, with - depth papers on the multidisciplinary ?elds of biomedical image computing and analysis, computer assisted intervention and medical robotics. The conference brings together biological scientists, clinicians, computer scientists, engineers, mathematicians, physicists and other interested researchers and o?ers them a forum to exchange ideas in these exciting and rapidly growing ?elds. The conference is both very selective and very attractive: this year we - ceived a record number of 700 submissions from 34 countries and 6 continents, fromwhich258papers were selectedfor publication,whichcorrespondsto a s- cess rate of approximately 36%. Some interesting facts about the distribution of submitted and accepted papers are shown graphically at the end of this preface. The paper selection process this year was based on the following procedure, which included the introduction of several novelties over previous years. 1. A ProgramCommittee (PC) of 49 members was recruited by the Program Chairs,to getthenecessarybody ofexpertiseandgeographicalcoverage.All PC members agreed in advance to participate in the ?nal paper selection process. 2. Key words grouped in 7 categories were used to describe the content of the submissions and the expertise of the reviewers.




Scale Space and Variational Methods in Computer Vision


Book Description

This book constitutes the thoroughly refereed post-conference proceedings of the Third International Conference on Scale Space Methods and Variational Methods in Computer Vision, SSVM 2011, held in Ein-Gedi, Israel in May/June 2011. The 24 revised full papers presented together with 44 poster papers were carefully reviewed and selected from 78 submissions. The papers are organized in topical sections on denoising and enhancement, segmentation, image representation and invariants, shape analysis, and optical flow.




Variational, Geometric, and Level Set Methods in Computer Vision


Book Description

Mathematical methods has been a dominant research path in computational vision leading to a number of areas like ?ltering, segmentation, motion analysis and stereo reconstruction. Within such a branch visual perception tasks can either be addressed through the introduction of application-driven geometric ?ows or through the minimization of problem-driven cost functions where their lowest potential corresponds to image understanding. The 3rd IEEE Workshop on Variational, Geometric and Level Set Methods focused on these novel mathematical techniques and their applications to c- puter vision problems. To this end, from a substantial number of submissions, 30 high-quality papers were selected after a fully blind review process covering a large spectrum of computer-aided visual understanding of the environment. The papers are organized into four thematic areas: (i) Image Filtering and Reconstruction, (ii) Segmentation and Grouping, (iii) Registration and Motion Analysis and (iiii) 3D and Reconstruction. In the ?rst area solutions to image enhancement, inpainting and compression are presented, while more advanced applications like model-free and model-based segmentation are presented in the segmentation area. Registration of curves and images as well as multi-frame segmentation and tracking are part of the motion understanding track, while - troducing computationalprocessesinmanifolds,shapefromshading,calibration and stereo reconstruction are part of the 3D track. We hope that the material presented in the proceedings exceeds your exp- tations and will in?uence your research directions in the future. We would like to acknowledge the support of the Imaging and Visualization Department of Siemens Corporate Research for sponsoring the Best Student Paper Award.




Variational and Level Set Methods in Image Segmentation


Book Description

Image segmentation consists of dividing an image domain into disjoint regions according to a characterization of the image within or in-between the regions. Therefore, segmenting an image is to divide its domain into relevant components. The efficient solution of the key problems in image segmentation promises to enable a rich array of useful applications. The current major application areas include robotics, medical image analysis, remote sensing, scene understanding, and image database retrieval. The subject of this book is image segmentation by variational methods with a focus on formulations which use closed regular plane curves to define the segmentation regions and on a level set implementation of the corresponding active curve evolution algorithms. Each method is developed from an objective functional which embeds constraints on both the image domain partition of the segmentation and the image data within or in-between the partition regions. The necessary conditions to optimize the objective functional are then derived and solved numerically. The book covers, within the active curve and level set formalism, the basic two-region segmentation methods, multiregion extensions, region merging, image modeling, and motion based segmentation. To treat various important classes of images, modeling investigates several parametric distributions such as the Gaussian, Gamma, Weibull, and Wishart. It also investigates non-parametric models. In motion segmentation, both optical flow and the movement of real three-dimensional objects are studied.